જો વિધેય $f(x)$ એ $[0,2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે અને જો $f(x)=0$ ; $\left| {f'\left( x \right)} \right| \leqslant \frac{1}{2}$ દરેક $x \in \left[ {0,2} \right]$, તો  . . .  

  • A

    $f\left( x \right) \geqslant 2$

  • B

    $\left| {f\left( x \right)} \right| \leqslant 1$

  • C

    $f\left( x \right) = 2x$

  • D

    ઓછામાં ઓછી $x$ ની એક કિમંત $[0,2]$ માં મળે કે જેથી $f(x) = 3$ 

Similar Questions

જો  $f(x) = (x-4)(x-5)(x-6)(x-7)$ તો 

દ્રીઘાત સમીકરણ ${\text{ a}}{{\text{x}}^{\text{2}}}{\text{  +  bx  +  c  =  0 }}$ સ્વીકારો જ્યાં, $2a\,\, + \,\,3b\,\, + \,\,6c\,\, = \,\,0$ અને ${\text{g(x)}}\,\, = \,\,{\text{a}}\,\,\frac{{{{\text{x}}^{\text{3}}}}}{3}\,\, + \,\,{\text{b}}\,\frac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}\,\, + \,\,{\text{cx}}$ લો. 

વિધાન $- 1 : (0, 1)$  અંતરાલમાં દ્વિઘાત સમીકરણના ઓછામાં ઓછું એક બીજ છે.

વિધાન $- 2 : [0, 1]$ અંતરાલમાં વિધેય $g(x)$  માટે રોલનો પ્રમેય લાગુ પાડી શકાય.

જો $f$ એ વિકલીનીય વિધેય હોય કે જેથી $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ તથા $f(2) = f(5) = f(10)$ આપેેેલ હોય તો સમીકરણ $f'(x) = 0$ જ્યા $x \in \left( { - 5,10} \right)$ ના બિજો ઓછામાઓછા કેટલા મળે ?

મધ્યક પ્રમેય મુજબ, $f(b) - f(a) = (b - a)f'(c)$ જો $a = 4$, $b = 9$ અને $f(x) = \sqrt x $ તો $c$ ની કિમત મેળવો.

ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[5,9]$